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Scheme-Independent Stability Criteria 
for Difference Approximations of Hyperbolic 

Initial-Boundary Value Problems. II 

By Moshe Goldberg* and Eitan Tadmor** 

Absract. Convenient stability criteria are obtained for difference approximations to initial- 
boundary value problems associated with the hyperbolic system u, - Au, + Bu + f in the 
quarter plane x > 0, t > 0. The approximations consist of arbitrary basic schemes and a 
wide class of boundary conditions. The new criteria are given in terms of the outflow part of 
the boundary conditions and are independent of the basic scheme. The results easily imply 
that a number of well-known boundary treatments, when used in combination with arbitrary 
stable basic schemes, always maintain stability. Consequently, many special cases studied in 
recent literature are generalized. 

0. Introduction. In this paper we extend the results of [2] to obtain easily 
checkable stability criteria for difference approximations of initial-boundary value 
problems associated with the linear hyperbolic differential system ut = Aux + Bu 
+ f in the quarter plane x > 0, t > 0. The difference approximations, introduced 
in Section 1, consist of arbitrary basic schemes-explicit or implicit, dissipative or 
unitary, two-level or multi-level-and boundary conditions of a rather general type. 

The first step in our stability analysis is made in Section 2, where we prove that 
the approximation is stable if and only if the scalar outflow components of its 
principal part are stable. This reduces the global stability question to that of a 
scalar, homogeneous, outflow problem which thereafter becomes the main object 
of the paper. 

Investigating the stability of the reduced problem, our main results are restricted 
to the case where the boundary conditions are translatory, i.e., determined at all 
boundary points by the same coefficients. Such boundary conditions are commonly 
used in practice; and, in particular, when the numerical boundary consists of a 
single point the boundary conditions are translatory by definition. 

The main stability criteria for the translatory case, stated without proof in 
Section 3, are given essentially in terms of the boundary conditions. Such scheme- 
independent criteria eliminate the need to analyze the intricate and often com- 
plicated interaction between the basic scheme and the boundary conditions; hence 
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providing convenient alternatives to the well-known stability criterion of Gustafs- 
son, Kreiss, and Sundstrom [3], which is the basis for our work. 

As in [31, we assume that the basic scheme is stable for the pure Cauchy problem 
and that the approximation is solvable. Under these basic assumptions-which are 
obviously necessary for stability-we obtain, for example, in Theorems 3.3 and 3.4, 
that the reduced problem is stable if the (translatory) boundary conditions are 
solvable and satisfy the von Neumann condition as well as an additional simple 
inequality. If the basic scheme is unitary, it is also required that the boundary 
conditions be dissipative. 

Having the new stability criteria, we continue in Section 3 to study several 
examples. First, we reestablish the known fact that if the basic scheme is two-level 
and dissipative, then outflow boundary conditions determined by horizontal ex- 
trapolation always maintain stability. Surprisingly, we show that this result is false 
if the basic scheme is of more than two levels. Next, for arbitrary multi-level 
dissipative basic schemes, we find that if the outflow boundary conditions are 
generated, for example, by oblique extrapolation, by the Box-Scheme, or by the 
right-sided Euler scheme, then overall stability is assured. Finally, for basic 
schemes (dissipative or unitary), we show that overall stability holds if the outflow 
boundary conditions are determined by the right-sided explicit or implicit Euler 
schemes. These examples incorporate many special cases discussed in recent 
literature [1]-[4], [6], [9], [10]. 

In Sections 4 and 5 we prove the results stated in Section 3. 
It should be pointed out that there is no difficulty in extending our stability 

criteria to cases with two boundaries. In fact, if the corresponding left and right 
quarter-plane problems are stable, then, by Theorem 5.4 of [3], the original 
two-boundary problem is stable as well. 

Thanks are due to Bjorn Engquist and Stanley Osher for most helpful discus- 
sions. 

1. The Difference Approximation. Consider the first order hyperbolic system of 
partial differential equations 

(1.la) au(x, t)/at = Aau(x, t)/ax + Bu(x, t) + f(x, t), x > 0, t > 0, 

where u(x, t) = (u ()(x, t), . . . , u(n)(x, t))' is the vector of unknowns (prime denot- 
ing the transpose), f(x, t) = (f(')(x, t), . . . , f(n)(X, t))' is a given vector, and A and 
B are fixed n x n matrices so that A is Hermitian and nonsingular. Without 
restriction we may assume that A is diagonal of the form 

(1.2) A = 
A 
/ 

ll 
01) All < O, A 1111 > 0, 

where A " and A II are of orders 1 x 1 and (n - 1) X (n - 1), respectively. 
The solution of (1.1) is uniquely determined if we prescribe initial values 

(1.lb) u(x, 0) = u(x), x > 0, 

and boundary conditions 

(1.lc) U'(0, t) = Su"(0, t) + g(t), t > 0, 
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where S is a fixed I x (n - 1) matrix, g(t) is a given I-vector, and 

( 1.3) uI = (U (0l ), u(i))' U11 = (U"(l+ 1) " .~u(n) ) 

is a partition of u into inflow and outflow unknowns, respectively, corresponding to 
the partition of A. 

In order to solve the initial-boundary value problem (1.1) by difference ap- 
proximations we introduce a mesh size h Ax > 0, k _ At > 0, such that X _ 
h/k = constant. Using the notation v,(t) = v(vh, t), we approximate (1.la) by a 
consistent, two-sided, general multi-step basic scheme of the form 

s 

Q_Iv,(t + k) = E Q0v;w(t - ak) + kb,(t), v = r, r + 1, ... 
(1.4a) 0=0 

p 

QO = f Ajc,Ei, Evi, = V'V +I a 1 s, 
j= -r 

where the n x n matrices Aj0 are polynomials in A and kB, and the n-vectors b,(t) 
depend smoothly onf(x, t) and its derivatives. 

To solve (1.4a) uniquely, we provide initial values 

(1.4b) vj(ak) = vi(ak), a = O, ..., s, v =~ O,1.. 

where in addition we must specify, at each time step t = >k > sk, boundary values 

v,u(t + k), j, = O, ... ., r - 1. The required boundary values will be determined by 
two sets of boundary conditions, the first of which is obtained by taking the last 
n - I components of general boundary conditions of the form 

q 

T(,u)vu(t + k) = Tu)vu(t - ak) + kdu(t), 
o=o 

m 
TOO 2 c(,u)Ej, ,u = O,. , r -1, a = -1, , q, 

j=O 

where the matrices C)Of) are polynomials in A and kB, the C(A) are nonsingular, 
and the n-vectors d,(t) are functions of f(x, t), g(t) and their derivatives. If we put 

Jolf Jo d jC(y C Ja 
1(j) Cr 1')1V 

[V,] d (d 
ll(u 

in accordance with the partitions of A and U in (1.2), (1.3), this set of conditions 
takes the form 

TI I(,u)vl (t + k) + TI "(-u)v"(t + k) 
q 

(1.4c) = 2 [TI '(,u)v(t - ak) + TIo "(,u)v,,(t - ak)] + kelu(t), 
o =0 

m 

a(u)= = 
cjI )E a = 1, 11, ,u = 0, . . ., r- 1. 

j=0 

For the second set of boundary conditions we use the analytic condition 

(1.4d) vo(t + k) = Svo'(t + k) + g(t + k), 
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together with r - 1 additional conditions of the form 
p 

(1.4e) v,(t + k) = i [DJI('u)vj(t + k) + D"(-u)vY'(t + k)] + ke'(t), 

,u= l.,r-1 

where the matrices Dj'I(,L) and Dj1' (Iu)-of orders I x I and I x (n - 1), respec- 
tively-are polynomials in the blocks (A")-' and kBaf, a, ,B = I, II, of the 
matching partitions 

A i ?IAll)l kB =k(B ll) 

so that D 1 '(/A) are homogeneous in B'" and B"', and the I-vectors et(t) are again 
functions of f(x, t), g(t) and their derivatives. 

We remark that (1.4c, d, e) can be solved uniquely for the required boundary 
values vM,(t + k), ,u = 0, . .. , r - 1, in terms of neighboring values of v, at least for 
sufficiently small k. Indeed, since B introduces an 0(k) perturbation of the matrix 
coefficients in (1.4c, e), it suffices to prove this statement for B = 0. But then, using 
the properties of C,uL) and Djl (y), it is not hard to see that Ci" I I = 0 and 
that the CJtL'l are nonsingular; hence (1.4c) uniquely determines the vectors 
0(t + k), ,u = r - 1, . . . , 0 (in that order), and, substituting in (1.4d, e), we 
explicitly obtain 1 

(t + k), ,u = , . . , r-1. 
We also remark that, while it is a standard matter to construct boundary 

conditions of the form (1.4c) to any degree of accuracy, the construction of (1.4e) is 
less obvious. For example, using (1.1), we find by induction onj > 1 that 

(1.5) :1Ju(X, t) = (L,Yu(x, t) - yj(x, t) 

and 

(1.6) a-j u(x, t) = (L.Yu(x, t) + zj(x, t), 

where the operators L, Lx and the vectors yj(x, t), zj(x, t) are given by 
j-1 . - 

L =A a t B y1(x, t) = O (L,)A a f(x, t), 

at j-l a-i-l 
Lx = a + B, z t) = (Lx)' at,'- f(x, t). 

Now, if conditions of the form (1.4e) are required to p order of accuracy, we take a 
Taylor expansion of ul(t) and use (1.5) and (1.1c) to obtain 

U (t + k) = j ---aU'(O, t + k) + O(hP+1) 

(1.7) -E0 ? ! [(L,Yu(O, t + k)-yj(O, t + k)]' + 0(hP +) 

- (,uhy KLV( Su"(0, t + k) + g(t + 
)-yj(,t+k 

,=0 j! u"(0, t + k) ) + 

+ 0(hP+ ), 
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where [.11 denotes the first 1 components of the enclosed vectors. We see that 
ul(t + k) depends on time derivatives of u"(0, t + k) which, using (1.6), may be 
replaced by space derivatives of u'(0, t + k) and u"(0, t + k). Approximating these 
space derivatives by p-order accurate linear combinations of ut(t + k),..., 

u1(t + k) and u4(t + k), ... ., ul(t + k), respectively, we finally obtain (1.4e) if 
u is replaced by v and terms of order O(h,+ 1) are dropped. 

A concrete example of a second order accurate boundary condition of form 
(1.4e), for the special case B = f = 0, is given in [2]. 

2. The Reduced Problem. The difference approximation is completely defined 
now by (1.4), and we wish to apply to it the stability theory of Gustafsson, Kreiss, 
and Sundstrom [3]. Trying to fit our approximation into the form discussed in [3], 
we realize, however, that while in the present paper the vector b of the basic scheme 
(1.4a) is a general combination of f and its derivatives, in [3] we have b = f. Indeed, 
the general b admitted by us here is necessary if arbitrary high order approxima- 
tions to (1.1a) are desired.*** Yet, it is not hard to see that this generalization does 
not affect the results of [3]. We conclude, therefore, that making the same assump- 
tions about our difference approximation as were made in [3], the theory of Gustafsson 
et al. holds for our case, and we raise the question of stability in the sense of 
Definition 3.3 of [3]. 

In Theorem 2.1 below, we shall reduce the above stability question to that of a 
scalar outflow approximation with homogeneous boundary conditions. To obtain 
this theorem, we begin by recalling Lemma 10.3 of [3] which provides a necessary 
and sufficient determinantal stability criterion given entirely in terms of the 
principal part of the approximation, i.e., the part obtained by neglecting B and 
eliminating all inhomogeneity vectors. The mere existence of such a criterion 
implies that for stability purposes we may study (1.4) with b,(t) = du(t) = e,(t) = 
g(t) = C-."'(A)=Dl '()=0; hence, instead of (1.4) we may consider a basic 
scheme of the form 

Q-lv,(t + k) = iQv,(t - k), v r, r + 1, .. 
(2.1a) a=0 

QO = Aj0E1, Ev, = Vv+l v = -1, . . ., s, 
j= -r 

with initial values 

(2. 1b) v,(ak) = v'Jak), a =0, ... , s, v = 0, 1, ....9 

and boundary conditions 
q 

TII I'(0)v0(t + k) = E T"' "(A)v"(t - ak), 

(2.1c) m 
TII II(,u) C E ' CJ I(A)Ej, ,U = O, . . ., r - 1, 

j=0 

*** For example, the Lax-Wendroff scheme [71 for (I.la) is 

v,(t + k) = A-v,- (t) + AOv,(t) + A v,+ (t) + kb,(t), Ao = I + kB +k2B2 -2A2, 

A,, ='XA 2A2-,Xk(AB + BA), b(x,t)= I+'k(B+A + +f(x,t). 
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(2.1d) vo(t + k) = Svll(t + k), 
p 

(2.1e) v (t + k) = 2 D' "('A)vj'(t + k), = 1, ... ., r - 1, 
j=1 

where (2. la) is now consistent with 

(2.2) au/at = Aau/ax, 
and the Aj0 and CJiI II(y) are polynomials in A and in A I, respectively. 

We thus obtain, 

LEMMA 2.1. Approximation (1.4) is stable if and only if its principal part (2.1) is 
stable. 

Setting 

A10 = i Aii"]' j=-r,...,p a=-1,...,s, 

according to the partition of A in (1.2), our next step is to split the basic scheme 
(2.1 a) and the initial values (2. lb) into 

Q-vv(t + k) = IV' QO (t - ak)9 
v = r, r + 1, 

(2.3a) ==0 
2 

j= -r 

(2.3b) vl (ok) = v(ak)q a = 0, ... , s, v =g 0, 1 .. 

and 

Q I' 11vI(t + k) = E QII IIVI(t - ak), v = r, r + 1,, 

(2.4a) a=0 

QI I= z I IE 

j= -r 

(2.4b) vll(ak) = V1(ak), a= 0, .. ., s, V = O, 1, ... 

thus viewing approximation (2.1) as consisting of inflow and outflow parts given by 
(2.3) (2. 1d, e) and (2.4) (2. 1c), respectively. Obviously, (2.1) is stable if and only if 
both parts are. 

We observe that the outflow part (2.4) (2. 1c) is self-contained and provides, via 
(2. 1d, e), the boundary values V1(t + k), ,I = 0, ... ., r - 1. We may therefore 
consider (2.ld, e) as arbitrary inhomogeneous boundary values for the inflow part. 
So, by the argument involving Lemma 10.3 of [3] preceding Lemma 2.1, we may 
replace (2.1d, e)-without affecting stability-by homogeneous boundary values 

(2.5) v ( t +k) = 0 0 O. . . r -1. 

This gives us a new self-contained inflow part, (2.3) (2.5), whose stability together 
with that of (2.4) (2. 1c) is equivalent to the overall stability of (2.1). 

Since the A10 and C"'l I(y) are diagonal, we write 
jao 
Aj10, = diag(aj,,0), CjP I(P) = diag ( C5lll 9) 
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and split (2.3) (2.5) and (2.4) (2. 1c) into n scalar components, each of the form 

Q-lv,(t + k) = f Qav,(t - k), v = r, r +1, 

(2.6a) 
a=0 

p 

QO= E a.OE, 
j= -r 

(2.6b) vjak) = v(ak)q a = 09, . ., s, v =g O, 1 . 

q 

(2.6c) TPv,,(t + k) = E T,,)v,,(t - ak), = 0, .. , r - 1, 

where (2.6a) is consistent with a corresponding component of (2.2), 

(2.7) au/at = aau/ax, a 7# 0; 

and the boundary conditions (2.6c) are either homogeneous, i.e., 

(2.8) T) = , T()=O, ,u= O, ... ., r-1, a = O,.. ., s, 

or are given by 
m 

(2.9) TO(P) = E cj(,)E , c&P)) #4 09 Ou = O, . . .. r-1 a =-,.. .,q, 
j=0 

depending on whether a < 0 or a > 0, respectively. 
Since (2.1) is stable if and only if (2.3) (2.5) and (2.4) (2. 1c) are stable, and since 

the latter are stable if and only if their scalar components are, we obtain im- 
mediately 

LEMMA 2.2. Approximation (2.1) is stable if and only if the scalar components of 
(2.3) (2.5) and (2.4) (2.1c), given by (2.6) (2.8) and (2.6) (2.9), are stable. 

In Section 4 we shall prove 

LEMMA 2.3. The inflow approximation (2.6) (2.8) is unconditionally stable. 

This lemma-due to Kreiss [4] in the special case when the basic scheme is 
dissipative, explicit and two-level-combined with the previous two, finally yields 
the main result of this section: 

THEOREM 2.1. Approximation (1.4) is stable if and only if the scalar outflow 
components of its principal part are stable. 

The above discussion implies that from now on we may reduce our stability 
study to scalar approximations of form (2.6) with either (2.8) or (2.9). We thus 
conclude this section by stating the basic assumptions of [3] relating to these 
approximations which will hereafter hold throughout the paper. 

Assumption 2.1 (Assumption 3.1, [3]). Approximation (2.6) is solvable, i.e., there 
exists a constant K > 0 such that for each y E 12(x) there is a unique solution 
w E 12(x) to 

Q-1w,=y, v=r,r+ 1,..., 

VAy)w = y,, ,u = O ... ., r -1 

with liwli KIIy I. Here, 12(x) is the space of all grid functions w = {w,}. 0 with 

11w112 _ h X?? 0 1WA 2 < oC. 
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Assumption 2.2 (Assumption 5.1 [3]). The basic scheme (2.6a) is stable for the 
pure Cauchy problem, - oo < v < oo. That is, putting 

s 

(2.10) a>(z) aj(_ ) -E z la>, j' = -r, . . . 

we have 
(i) The von Neumann condition; i.e., the solutions z(() of the equation 

p 

(2.11) E aj(z)e"j = o 
j=-r 

satisfy Iz(()I < 1 for all 11 < Sr. 
(ii) Those z(() which lie on the unit circle are simple roots of (2.1 1). 
Assumption 2.3 (Assumption 5.4 [3]). The basic scheme (2.6a) is either dissipative, 

i.e., the roots of (2.11) satisfy 

(2.12) Iz(()I < 1, 0 < 11 7T, 

or it is unitary, namely 

(2.13) 1401) = 1, 1(1 < v. 

Finally, for convenience only, we make 
Assumption 2.4 (Assumption 5.5 [3]). 

(2.14) a r(Z), ap(z) #P 0 for IzI > 1. 

3. Statement of Main Results and Examples. The purpose of this section is to 
provide easily checkable stability criteria for outflow approximations of form (2.6) 
(2.9). In view of Theorem 2.1, this is the key to the overall stability question of 
approximation (1.4). 

Our results-stated below and proved in Section 5-are essentially independent of 
the basic scheme (2.6a) and are given solely in terms of the boundary conditions. 
These results, however, do not apply to general boundary conditions of form (2.6c) 
(2.9); instead we are concerned in this section with the translatory case where (2.6c) 
(2.9) are of the form 

q 

T_ v,, ( t + k) = E T0vA(t - ak), 

(3.1) a=0 

To = : c. cE., CO(_ l) 7&L0, ,u= O,..r -1. 
j=O 

As mentioned in the introduction, such boundary conditions are widely used in 
practice since the coefficients cjf, are independent of A and all boundary values are 
conveniently determined by the same procedure. Especially, when the numerical 
boundary consists of a single grid point (r = 1), the computation at the boundary 
is translatory by definition. 

We associate now with the boundary conditions (3.1) the boundary characteristic 
function 

m 

(3.2) R(z, K) -Ez Cj(Z) Kj, 
j=O 
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where 
q 

(3.3) c>(z) _ cj(- , z0-1 Cl1, j = O, ... ., n. 
0=0 

This allows us to state 

THEOREM 3.1. Let the basic scheme (2.6a) be two-level and dissipative. Then the 
outflow approximation (2.6a, b) (3.1) is stable if 

(3.4) R(z, K) 70 VIZI > 1, O < IK| < 1. 

Example 3.1 (Kreiss [4, Theorem 6]; see also [1] and [2, Example (4.5)]). Let the 
basic scheme (2.6a) be two-level and dissipative, and let the boundary conditions 
be determined by horizontal extrapolation of order w - 1, i.e., 

(0w 

(3.5a) v,L(t + k) = I (4 (-ly+ v,.+j(t + k), j =0,..., r- 1. 
j=1 

The boundary characteristic function-which for one-level boundary conditions is 
always z-independent-satisfies 

(3.5b) R(K) = I E ( )(- ly'K = (I - K)< 0 , 0 < |K| < 1. 
j=1 

Hence, (3.4) holds and, by Theorem 3.1, (2.6a, b) (3.5) is stable. 
It should be pointed out that Theorem 3.1 is generally false if the basic scheme is 

of more than two levels. Surprisingly, even the well-known result in Example 3.1 
may fail to hold; namely, outflow dissipative multi-level basic schemes (s > 3), with 
boundary values determined by extrapolation of type (3.5a), are not always stable. For 
example, consider the 3-level, 5-point basic scheme 

v,(t + k) - --(E - I)2(I - E-)2]v(t - k) + Xa(E -E-)v,(t), 

(3.6) O <E- < 0 1,0<Xa < I1- P,v=2,3,.... 

with boundary values v,(t + k), t = 0, 1, determined by (3.5a). As shown in 
Section 9 of [6] the basic scheme is dissipative, and it is not hard to verify that the 
rest of our basic assumptions are fulfilled as well. Yet, although condition (3.4) of 
Theorem 3.1 is satisfied as exhibited by (3.5b), we prove in Example 4.1 below that 
approximation (3.6) (3.5a) is unstable. 

Despite the above observation we can strengthen Theorem 3.1 for multi-level 
dissipative basic schemes as follows. 

THEOREM 3.2. Let the basic scheme (2.6a) be dissipative. Then the outflow ap- 
proximation (2.6a, b) (3.1) is stable if (3.4) holds and if 

(3.7) R(Z,K = 1) #?0 VIzI = 1,z 54 1. 

Evidently, Example (3.6) (3.5a) implies that the additional condition (3.7) is 
essential for Theorem 3.2. 

Having stated Theorems 3.1, 3.2, we see that, when the boundary conditions (3.1) 
are not single-level (as in Examples 3.1), condition (3.4) may become a cumber- 
some inequality in two variables, z and K. Seeking a convenient alternative to these 
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theorems, we extend the range of ,I in (3.1) to obtain the boundary scheme, 
q 

T lv,u(t +k)= Y Tvr,(t - k), ,u =0,1, 929,. 
(3.8) a=0 

m 

To= , c,,E', a = -1, . .. ,r 
j=O 

and in analogy to the definitions in Assumptions 2.1, 2.2, we introduce 
Definition 3.1. The boundary scheme (3.8) is said to be solvable if there exists a 

constant K > 0 so that for each y E 12(x) there is a unique solution w E 12(x) to 

(3.9) T_lwl, = Yu, , u = 0, I1, 29 ... .. 

with llwll S Kllyll. 
Definition 3.2. The boundary scheme is said to fulfill the von Neumann condition 

if the roots z(() of 
m 

(3.10) R(z, K = e'i) _ j ?(z)ei - 0 
j=O 

satisfy Iz(()I < 1 for all v ( ST. 
We can now state 

THEOREM 3.3 (1st Main Theorem). Let the basic scheme (2.6a) be dissipative. If 
(3.7) holds, and if the boundary scheme (3.8) is solvable and satisfies the von 
Neumann condition, then the outflow approximation (2.6a, b) (3.1) is stable. 

This result is an extended analogue of the main theorem (Theorem 2.2) of [2]. 
Useful sufficient conditions for (3.7), as well as for the solvability of the 

boundary scheme (3.8), are given in the next two lemmas. 

LEMMA 3.1. Condition (3.7) holds if any of the following is satisfied: 
(i) The boundary conditions (3.1) are two-level (i.e., q = 0) and accurate of order 

zero at least. 
(ii) The boundary conditions are three-level, accurate of order zero at least, and in 

addition R(z = -1, K = 1) #! 0. 

LEMMA 3.2. (i) The boundary scheme (3.8) is solvable if 
q 

T_ 1(K) - E -Kj ' ?0, 0 < IKI < 1. 
j=O 

(ii) In particular, explicit boundary schemes are always solvable. 

Example 3.2. (Compare the special cases [3, (6.11)] and [2, Example 1].) Let the 
basic scheme (2.6a) be dissipative and determine the boundary conditions by 
oblique extrapolation of order w - 1: 

(3.1la) v,(t + k) = 2 ( )(- 1+'v,+j[t - (j - I)k], 1s = 0, ... ,r -1 
1=1 

The boundary characteristic function associated with (3.1 la) is given by 

(3.1lb) R(z, K) = 1 - ( )(-ly z'Ki = (1 - Z K) 
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so obviously (3.7) holds. Further, the roots of (3.1 lb) satisfy 

IZ(K = ei-)l = le'tl = 1. 
Thus, the associated boundary scheme-which by Lemma 3.2 (ii) is solvable-fulfills 
the von Neumann condition, and, by Theorem 3.3, (2.6a, b) (3.1 la) is stable. 

Example 3.3. (Compare the special cases [3, (6.3c)], [9, (3.4)] and [4, Example 4].) 
Let the basic scheme (2.6a) be dissipative and let the boundary conditions be 
generated by the second order accurate Box-Scheme 

(3.12) vl(t + k) + + k)-Aa[v,+l(t + k)-v,(t + k)] 

= v,(t) + v,+,(t) + Xa[v,A+l(t) - v,A(t)], ,I = 0, ... ., r - 1. 

By Lemma 3.1(i), (3.7) is fulfilled, and, since 

Re[ T_1(K)] = 1 + Re(K) + Xa[ 1 - Re(K)] #0, IKI < 1, 
then by Lemma 3.2(i), the boundary scheme is solvable. The boundary characteris- 
tic function is 

R(z, K) = 1 + K - Xa(K - 1) - Z'[1 + K + Xa(K - 1)], 

so its root satisfies 

IZ(K = et)I = + e't +Xa(e' -1) = 1, I< IT; 
1 + e't - Xa(e't - 1) 

hence, the von Neumann condition holds as well, and Theorem 3.3 implies 
stability. 

Example 3.4. (Compare the special case [10, (6.26)].) Let the basic scheme (2.6a) 
be dissipative and define the boundary conditions by the right-sided weighted 
Euler scheme 

(3.13) v,(t + k) = v,(t - k) + Xa[2v,+l(t) - v,(t + k) - v,(t -k)], 

0 < a Sl, 1, = O,... .r -1. 

The characteristic function for (3.13) is 

R(z, K) = 1 - Z 2 - Xa(2Kz' - 1 _ z-2) 

and by equating to zero we find its roots 

Z(K = eite) itXa+ ?b(), b() + e I[ -(a)2 

hence 

Z(K = 1) = Xa 1 #e', 0< <I I XT, 

and (3.7) holds. In addition, since 0 < Xa < 1, then Ib(()j < 1, 141 < T; so 

IZ(K = eit)I < Xa + jb(1)j < 1, < IT, Xa + 1 

and the boundary scheme satisfies the von Neumann condition. Finally, since the 
boundary scheme is explicit, Lemma 3.2(ii) implies solvability, and by Theorem 3.3 
stability follows. 
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We remark that solvability of the boundary scheme is necessary for Theorem 3.3. 
To see this, consider any dissipative basic scheme with zero-order accurate 
boundary conditions of the form 

v,,(t + k) - Ov,,+(t + k) = vix(t) - Ovi+(t) 
(3.14a) 0~~~~~ > l,,uO,..,r1. 

By Lemma 3.1(i), (3.7) is fulfilled. Also, the boundary characteristic function is 

(3.14b) R(z, K) = (1 - Z )( - OK), 

hence its single root, z = 1, satisfies the von Neumann condition. As shown in 
Example 4.2, however, the approximation is unstable, which is explained by the 
failure of the associated boundary scheme to be solvable. Indeed, taking y = 0 in 
(3.9), we find that the grid function w = (0- vwo 0, with arbitrary wo, belongs to 
12(x) and satisfies (3.9); thus we have neither the uniqueness nor the boundedness 
of w required by Definition 3.1. 

Condition (3.7) is also necessary for Theorem 3.3 as can be shown by taking (3.6) 
with 0 < Xa < and consistent boundary conditions of the form 

(3.15a) v,(t + k) = v,(t - k) + 2Xa[v,+l(t - k) - v,(t - k)], , = 0, 1. 

As mentioned before, the basic scheme is dissipative, and by Lemma 3.2(ii) the 
boundary scheme is solvable. The boundary characteristic function is 

(3.15b) R(z, k) = 1 _ z-2[1 + 2Xa(K - 1) ], 

so it is not hard to verify that the boundary scheme satisfies the von Neumann 
condition (and is, in fact, even dissipative). Yet, as demonstrated by Example 4.3 
below, (3.6) (3.15a) is unstable. The reason Theorem 3.3 does not apply in this case 
is that R(z = -1, K = 1) = 0, i.e., (3.7) is violated. 

So far we have treated, in this section, the case where the basic scheme is 
dissipative. For the general case, where the basic scheme might also be unitary, we 
need 

Definition 3.3. The boundary scheme (3.8) is said to be dissipative if the roots of 
Eq. (3.10) satisfy Iz(()j < 1 for 0 < 1K1 < ?T 

This enables us to state 

THEOREM 3.4 (2nd Main Theorem). Let the basic scheme (2.6a) be dissipative or 
unitary, let (3.7) hold, and let the boundary scheme (3.8) be solvable and dissipative. 
Then the outflow approximation (2.6a, b) (3.1) is stable. 

Example 3.5. (Compare the special cases [3, (6.3a)], [8, (3.2)] and [2, Example 2].) 
Let the basic scheme (2.6a) be dissipative or unitary and let the boundary 
conditions be generated by the right-sided explicit Euler scheme 

(3.16) v,,(t + k) = 
v,(t) + Xa[v.+ (t) -v,(t)], 

0<Xa < 1,,u=O,...,r-1. 

The boundary characteristic function is now 

R(z, K) = 1 - 
Z'[ 1 + Xa(K - 1)], 
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and, since 0 < Xa < 1, its root satisfies 

IZ(K = eit- 2 = (Xa)2 + (1- Xa)2 + 2Xa(1 - Xa)cos ( 

< (Xa)2 + (I1-A/a)2 + 2Xa ( I- a) = 1, ? < 141 S ?T; 

hence the corresponding boundary scheme is dissipative. Moreover, since (3.16) is 
two-level, first order accurate and explicit, Lemmas 3.1(i) and (3.2)(ii) imply that 
(3.7) holds and that the boundary scheme is solvable. The hypotheses of Theorem 
3.4 are fulfilled therefore, and approximation (2.6a, b) (3.16) is stable. 

ExamWle 3.6. (Compare the special cases [8, (3.3)] and [2, Example 3].) Let the 
basic scheme (2.6a) be dissipative or unitary, and define the boundary conditions 
by the right-sided, first order accurate, implicit Euler scheme: 

v,(7 (t + k) - Xa[v,,+,(t + k) - v,(t + k)] = v,,(t), 
(3.17) X~~ ~~~~~~~~~~~~~~~~~~~~~~~~a > , It= 0, . , r -1 

The characteristic function associated with (3.17) is given by 

R(z, K) = 1 - Xa(K - 1) - z 

so its root satisfies 

IZ(K = eit)I2 = [(Xa)2 + (1 + Xa)2 - 2Xa(1 + Xa)cos (] 

< [ (Xa)2 + (I + Xa)2 - 2Xa(l + Xa) ] 
- = 1, ? < 141 S 7T, 

and the boundary scheme is dissipative. Also, Lemma 3.1(i) implies (3.7), and, since 

Re[ T_1(K)] = 1 + Xa[ 1 - Re(K)] #0 O, IKI < 1 

then by Lemma 3.2(i), the boundary scheme is solvable. Thus, Theorem 3.4 applies 
and stability is assured. 

In concluding this section, we claim that condition (3.7) is necessary for Theorem 
3.4 (as well as for Theorem 3.3). For example, consider the nondissipative, 3-level 
Leap-Frog scheme 

(3.18) v,(t + k) = v,(t - k) + Xa[v,+,(t) -v,-(t)], 

0< a < 2,^= 12, .... 

where for the boundary condition we take (3.15a) with ,I = 0. As mentioned earlier, 
the corresponding boundary scheme is solvable and dissipative whereas (3.7) is 
violated. In Example 4.4 we show that approximation (3.18) (3.15a) is unstable, 
thus proving our claim. 

We conjecture that the solvability and dissipitativity of the boundary scheme are 
essential for Theorem 3.4. 

4. A Preliminary Stability Criterion. In this section we use the theory of 
Gustafsson et al. [3] to obtain in Theorem 4.2 below, a preliminary stability 
criterion for approximation (2.6). This criterion will be a major tool in proving 
Lemma 2.3 and Theorems 3.1-3.4. 

Following [3], we associate with approximation (2.6) the resolvent equation 

(4.1a) (Q-1 - 2 z--oQa)w = 0, p = r,r+ 1, 
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with boundary conditions 
q 

(4. 1b) T(,u 2 -f-TOA) w,,=0 ,uIt= 0....,r-1 
O =0 

where z #& 0 is a fixed arbitrary complex number. This can be written as 

(4.2) G(z)w = 0, 

where G(z) is a linear bounded operator on 12(x) defined by the left-hand sides of 
(4.1). We say that z is an eigenvalue of approximation (2.6) if (4.2) has a nontrivial 
solution w = w(z) E 12(x). If z is not an eigenvalue but there exists a sequence 

{w(z)U)})j C 12(x) with II w(z)() II = 1 such that 

G(z)w(z)u/) -> 0, 

we call z a generalized eigenvalue of approximation (2.6). 
Having these definitions, we restate the main result of [3] in the language of [5]: 

THEOREM 4.1 (Gustafsson et al. [3]). Approximation (2.6) is stable if and only if it 
has no eigenvalues nor generalized eigenvalues z with jzi > 1. 

Seeking a practical version of Theorem 4.1, we first need the following char- 
acterization of solvability. 

LEMMA 4.1 (essentially Osher, [8]). Approximation (2.6) is solvable if and only if 
(i) The difference equations 

Q-1w,=0, v=r,r+l,.... 

T('A)w 0=, Iu=O,. .., r -1, 

have no nontrivial solution w E 12(X). 

(ii) The equation 
p 

(4.3a) Q_1(K) _ aj(l-)Kj = 0 
j=-r 

has precisely rO solutions Kj with 0 < IKjI < I where 

(4.3b) ro = max{ -j: aj(-l) # 0). 

(iii) Q 1(IK) does not vanish on the unit circle, i.e., 

Q-1(K) #0, IKI = 1. 

Proof. Conditions (i) and (iii) coincide with Osher's conditions (d) and (g) in [8]. 
Regarding (ii), we note that rO> 0 (or else the basic scheme is unnaturally shifted 
to the right). Hence, 

p 

Q_1(K) = Kr ? aj(_l)Kj+ro 
j- -ro 

has a single pole of order ro at the origin. Since, by (iii), Q 1(K) does not vanish on 
the unit circle, we use the Argument Principle to find that there is no change in 
arg[Q (K = e'i)] as t varies from - X to X if and only if (ii) holds. Thus, 
conditions (i)-(iii) are equivalent to (d), (e), (g) in [8], and Theorem I of [8] 
completes the proof. 
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Recalling the functions aj(z) in (2.10), we introduce now the characteristic 
equation of the basic scheme (2.6a) 

p 

(4.4) P(z, K) E aj(z)Kj = 0, 
j= -r 

whose r + p roots K>(z) play a central role in determining the eigenvalues of 
approximation (2.6). 

LEMMA 4.2 (compare Lemmas 5.1 and 5.2, [3]). For lzl > 1, the characteristic 
equation (4.4) has precisely r roots with 0 < I K(z)I < 1, p roots with I Kj(z) > 1, and 
no roots with I Kj(Z)I = 1. 

Proof. By Assumption 2.4, the leading coefficients of P(z, K) do not vanish for 
Iz I > 1; hence (4.4) has r + p roots, all satisfying I Kj(z)l > 0. Since these roots are 
the solutions of the polynomial equation 

(4.5) Pr(Z, K) KrP(z, K) = 0, 

we may study (4.5) rather than (4.4). 
By Assumption 2.2(i), 

Pr(Z, K = e () 7# ?, |Z| > 1, |t| < 7J, 

i.e., for IzI > 1, Pr(Z, K) does not vanish on the unit circle IKI = 1. Since the roots of 
Pr(Z, K) are continuous functions of z, it follows that for IzI > 1 the number of 
roots satisfying 0 < I K(z)I < 1 is independent of z. In particular, consider the limit 
case 

p 
Pr(Z -* 0, K) = 2 aj(l)KC. 

=-r 

By Lemma 4. 1(iii), 

Pr (z 
oo- 0 K = eit 0, ? 7T| 

so, by continuity again, the number of roots of Pr(Z, K) satisfying 0 < I Kj(z)I I 1 
may be determined by counting the roots Kj, IKjI < 1, of Pr(Z --* , K). We have 

p 
Pr (Z -* , K) = KrrO _ a.( Kj ? ro, 

= -ro 

where ro is defined in (4.3b). Moreover, by Lemma 4. 1(ii), jp2 [ro aj(c)Kj, hence 

yjp_ -raK(-)Ij +ro have precisely ro roots with IKI < l. Thus, with its additional 
r - rO zeros, Pr(z - 00, K) has r roots with I KI < 1 and the lemma follows. 

According to the above lemma, the roots of the characteristic equation (4.4) split 
for IzI > 1 into two groups: r inner roots satisfying 0 < I Kj(z)I < 1 and p outer roots 
with IKj(z)l > 1. By continuity, therefore, these groups of inner and outer roots 
remain well defined for lzl > 1 as well, where milder inequalities, li(z)l < 1 and 

I Kj(z)I > 1, hold, respectively. Since, by Assumption 2.4, K = 0 is never a root of 

P(z, K) for IzI > 1, we finally obtain 

LEMMA 4.3. For IzI > 1, the r + p roots Kj(z) of the characteristic equation (4.4) 
split into r inner roots with 0 < IKj(z)j S 1 and p outer roots with jKj(z)j > 1. 
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Now, let z be given. It is well known (e.g. [5]) that z is an eigenvalue or a 
generalized eigenvalue of approximation (2.6) if and only if Eqs. (4.1) have a 
nontrivial solution of the form 

N Ma-I 

(4.6) W= E E Tap?ap(V)Ka(Z), v = 0, 1, 2, .... 
a=1 /3=0 

where K(Z), 1 S a < N, are the distinct inner roots of the characteristic equation 
(4.4) each with multiplicity Ma = M,(z). Here, I,,B(v) are arbitrary polynomials in 
v with deg[Oa,(v)] = ,B, and T are coefficients whose number, by Lemma 4.3, is 
precisely 

N 

a = 1 

To find the T,,a we substitute (4.6) in (4.1b) and obtain a linear homogeneous 
system of r equations with r unknowns, 

(4.7) J(z)T' = 0, 

where J(z) is an r x r coefficient matrix and x = (Ti,) is the unknown vector. 
Obviously, w = w(z) in (4.6) does not vanish if and only if (4.7) has a nontrivial 
solution r; hence, z is an eigenvalue or a generalized eigenvalue of approximation 
(2.6) if and only if det J(z) =# 0. 

This observation combined with Theorem 4.1 gives the following equivalent of 
Lemma 10.3 of [3]: 

LEMMA 4.4 (Gustafsson et al. [3]). Approximation (2.6) is stable if and only if 

detJ(z)#0, izj > 1. 

Now for z, jzj > 1, with corresponding distinct inner roots KI = KI(Z), 1 Sa < 
N, each with multiplicity Ma, we make a specific choice for the polynomials a(V) 

in (4.6): 

oaf(V) = K.(Z) A3! (V) 

Thus, (4.6) becomes 
N MalI 

WV = E E Ta'ifi! ( A) V , =0 1, 2, . .. 
a=1 /8=0 

and substituting in (4.1b)-with T(J) given by either (2.8) or (2.9)-, we obtain 
explicit expressions for the system J(z)T' = 0, namely 

N MalI 

(4.8) 2 B AK,.A. ..... - 0 =O, a r- 
a=1 /3=0 

or 

N MaI 1 qItj 

(4.9) X z E (c((y)l)- E z1 3! ( f Ka(Z) A'%j = 0, 
a=I 18=0 j=O o=0 IN 

o 0),r=e ... 1T 

according to the inflow and outflow cases (a < 0 or a > O), respectively. To 
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further simplify these expressions, we use the boundary coefficients to introduce r 
boundary functions 

[K!' a < 0, 

(4.10) R { ( C(c_I z CX () K , a > 0, 
j=0 0=0 

t=0,...,r-1. 

Since 

a R (Z, K) /( A) K A a <0, 

COO 2 
z-oc(!')*)!+'P 

E 
(_ () J flf 

l IL( +j K) +j-#, a > 0, 

systems (4.8) and (4.9) both take the unified compact form 

N M-- a B 
Z K) 

N AI[aR( K) *To 
= ?, /A = O, . . . , r- 1 

a=l =0 UPaK K= Kc(Z) 

so the coefficient matrix J(z) can be conveniently written as 

(4.1la) J(z) =[H(Z, K1, M1), * , H(z, KN, MN)], 

where H(z, Ka, Ma) 1 S a S N, are the r x Ma blocks 

H(z, Ka. Ma) 

R0(Z, K) R0(Z, K) RO(Z, K) 

(4.lIlI b) _ RI(Z, K) a RI(Z, K) a RI(Z, K) 

Rr_ i(Z K) Rr-1(Zq K) Rr-1i(Zq K) 
K 

K.(Z) 

This expression for J(z) gives us a concrete analogue of Lemma 4.4: 

LEMMA 4.5. Approximation (2.6) is stable if and only iffor every z, jzj > 1, 

(4.12) det J(z) det[ H(z, K1, M1), * , H(Z, KN MN)] 0 0 

where Ka = Ka(Z), 1 < (a N, are the distinct inner roots of (4.4), each with multiplic- 
ity Ma = Ma(Z). 

A milder version of this theorem is given in Theorem 3.2, (2]. 
We return now to the case where the inflow boundary conditions are, as before, 

homogeneous and given by (2.6c) (2.8), whereas the outflow conditions (2.6c) (2.9) 
are translatory as described in (3.1). In this case-where both the inflow and 
outflow conditions are of translatory type-the boundary functions in (4.10) be- 
come 

9/A a <0, 

(4.13) R(zC K) = { (?>, - E Zo'Cj1c10)cK+j, a > 0, 
j=O ap=O 

IL = 0, ... ., r-1 
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Hence, denoting 

R(z, K) -RO(z, K) 

(note: for a > 0 this definition coincides with the one in (3.2)), we find that 

R,,(z, K) = 0'R(Z, K), U =O . . .gyr - 1, 

so the blocks of J(z) in (4.1 lb) become 

H(z, Ka, Ma) 

R(z, K) R(z, K) R(z, K) 

(4. 14) = KR(ZZ K) a KR(z, K) a,,l KR(Z, K) 

Kr- R(z, K) Kr- 1R(z, K) K rR(z, K) 
L - j L L JK~~~~~~~~- KK 

This allows us to simplify Lemma 4.5 as follows. 

THEOREM 4.2 (compare Theorem 4.1, [2]). Approximation (2.6), with translatory 
boundary conditions given by either (3.1) for a > 0 or (2.8) for a < 0, is stable if and 
only if for every z, lzl > 1, with corresponding inner roots Ka(z), 1 < a < N, we have 

(4.15) R(z,K,a) # 0 a a = 1, ... . N. 

Proof. Suppose R(z, Ka) = 0 for some z, lzl > 1, with a corresponding inner root 
Ka. Then, clearly, the first column of H(z, Ka, Ma) in (4.14) vanishes; thus det J(z) 
- 0, and by Lemma 4.5 we have instability. 

Conversely, let (4.15) hold and take an arbitrary z, lzl > 1, with distinct inner 
roots Ka(Z), 1 a (a N. To prove stability it suffices, by Lemma 4.5, to verify that 
the rows of 

(4.16) J(z) = [H(z, K1, M1), ... , H(z, KN, MN)] 

are linearly independent, where the H(z, Ka, Ma) are given by (4.14). For that 
purpose, let 

K IclR(Zg KI), 
r-I 

(4.17) 1 [y ( = 0 

aMN 1 [K NAR(zg KN) ] aKNmN-' 

be a vanishing linear combination of the rows of (4.16), and let us rewrite (4.17) as 
r scalar equations 

(4.18) RR( K[ oY ]} 0) 1 < a < NO < j < M -1. 

Since, by hypothesis, 

R(z, K)IK=,., 09, 1 < a < N, 
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we expand the partial derivatives in (4.18) by Leibnitz' rule and use induction on 
j > 0 to find that the sum in (4.18) must have vanishing derivatives, i.e., 

d[ z ZK] =A O, I < a < N, O < j < Ma_l 
dK 

LI 
=` O 

JK 
= 

K. 

Consequently, the polynomial 

r-1 

I(K) z -YAK 
IL =O 

which is of degree r - 1 at most, has r roots (Ka, 1 < a < N, each with multiplicity 
Ma), sO I(K) 0 and the coefficients yA, must vanish. By (4.17), therefore, the rows 
of (4.16) are linearly independent and stability follows. 

The proof of Lemma 2.3 and the counterexamples of Section 3 are almost at 
hand now. 

Proof of Lemma 2.3. By (4.13), the boundary function associated with the 
homogeneous boundary conditions (2.6c) (2.8) is 

R(z, K) -RO(z, K) = 1. 

Thus, (4.15) holds trivially, and by the last theorem approximation (2.6) (2.8) is 
stable. 

Example 4.1. Consider the dissipative basic scheme (3.6) with the boundary 
conditions in (3.5a). The boundary function is given by (3.5b) and for z = -1 it can 
be shown (as in Lemma 6.2, [3]) that the characteristic equation has exactly one 
inner root satisfying K(Z = -1) = 1. Hence, R(z = 1, K = 1) = 0, and by Theorem 
4.2 we have instability. 

Example 4.2. Take the zero-order accurate boundary conditions (3.14a) in 
combination with any basic scheme (dissipative or even unitary). By (3.14b), 
R(z = 1, K) = 0 for all K; so at z = 1 the characteristic boundary function vanishes 
for all inner roots, and Theorem 4.2 implies instability. 

Example 4.3. Take the same basic scheme as in Example 4.1 with the boundary 
conditions in (3.15a). As in Example 4.1, we have an inner root K(z = -1) = 1 for 
which, by (3.15b), R(z, K) = 0. Hence, (4.15) is violated and approximation (3.6) 
(3.15) is unstable. 

Example 4.4. Consider the Leap-Frog scheme (3.18) with a boundary condition 
as in Example 4.3. In Lemma 6.2 [3] it is shown that the characteristic equation of 
(3.18) has a single inner root K(Z = -1) = 1. So as in the previous example, 
R(z = -1, K = 1) = 0, and by Theorem 4.2 instability follows. 

5. Proof of Main Results. We turn now to prove the results stated in Section 3, 
beginning with the following lemma. 

LEMMA 5.1. For z = 1, the characteristic equation (4.4) has exactly one root 
satisfying K(Z = 1) = 1. In the outflow case (a > 0) this is always an outer root. 

Proof. Since the basic scheme (2.6a) is consistent with 

au/at = aau/ax, a # 0, 
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the coefficients ajO must satisfy the ordinary consistency conditions 
p s P 

E aj(- 1) =,' E aj, 
j=-r a=O j=-r 

and 
p s P s P 

1: jaj(- 1) = : 1i jaj,,- Aa 1i (cr + 1) 1: ajO,, 
j=-r a=O j=-r a=O j=-r 

which can be written as 
p 

(5. la) . aj(z)I z. = 0, 
j =-r 

(5.1b) 2 ja(z)lz, = -Xa dz-aj(z)jz_ I 
j=-r dz -'r 

or, equivalently, as 

(5.2a) P(Z, K)tZ.K .l = 0, 

(5.2b) -P(z, K)|Z .K=l = -Xa -ZP(Z, K)lZ..K.l aK a 

Here, aj(z) and P(z, K) are defined in (2.10) and (4.4), respectively. 
By (5.la), z = 1 is a solution of 

p 

. aj(z) = 0, 
j - -r 

and by Assumption 2.2(ii) this solution is simple. Hence, 

dz f aj(z)lz-l * 0, 
jz -r 

so by (5.2b) 

a P(zg K)|Z..Kl = -Aa -yP(Z9 K)lZ..K... 

(5.2c) d P 

dz j--r a(z)t. 0 

Having (5.2a) and (5.2c), we employ the implicit function theorem to find that in 
the neighborhood of z = 1 the characteristic equation (4.4) can be uniquely solved 
for K as a differentiable function of z such that 

(5.3a) K(Z = 1) = 1. 

This is the first part of the lemma. 
To complete the proof, consider the outflow case a > 0. Then (5.2b) yields 

(5.3b) dK(z) =_ F ap 1 a= I > ; 
dz z-1 3Z'aKJ 

K 
C a 

so by (5.3a) (5.3b), for z = 1 + c with sufficiently small c > 0, 

K(Z) =1 + (XA)1 + O(e2) > 1. 

That is, for z in the right real neighborhood of z = 1, 

I K(Z)j > 1, 
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and by Lemma 4.2 this inequality is valid for all z, IzI > 1. By definition, therefore, 
K(Z) of (5.3a) is an outer root of (4.4) and the lemma follows. 

Proof of Theorem 3.1. Take an arbitrary z, lzl > 1, and let Ka = Ka(Z) be a 
corresponding inner root. In order to prove stability it suffices, by Theorem 4.2, to 
show that 

(5.4) R (z, K.) =# O. 

By Lemma 4.3, we have 0 < IKa(z)l < 1, where for 0 < IKa(z)l < 1, (5.4) is 
implied by (3.4). Hence, we may restrict attention to inner roots on the unit circle, 
i.e., Ka(Z) = ei', 1j1 < -i. Since the basic scheme is dissipative, then by (2.12) the 
solutions z = Z(K) of (4.4) satisfy 

(5.5) jZ(K = eif)l < 1, 0 < j4j 7 

Thus, for lzl > 1, (4.4) has no roots K = ei', 0 < j X, and our discussion is 
further reduced to IzI > 1, K,(Z) = 1. Next, by continuity, (5.5) yields 

jZ(K = 1)| < 1; 

SO K = 1 is ruled out as an inner root for IzI > 1 and it remains to consider IZt = 1, 
Ka(Z) = 1. Finally, by Lemma 5.1, K = 1 is excluded as an inner root for z = 1, and 
we are left with 

(5.6) tZt = 1, Z # 1, Ka(Z) = 1. 

Since the basic scheme is consistent, then by (5.2a) 

(5.7) P(z = 1, K = 1) = O. 
Moreover, since the basic scheme is two-level, P(z, K) is a polynomial of first 
degree in z -1 where, by (5.7), its only root is z - 1 = 1. Thus, 

P(Z, K = 1) 0, IZI = 1, z # 1, 

and the proof is complete. 
For Theorem 3.2 we repeat the previous proof to the point where the remaining 

values of z and Ka(Z) to be studied are given in (5.6). At this point, (3.7) implies 
(5.4) and stability is assured. 

To prove Theorems 3.3 and 3.4 we need yet another result. 

LEMMA 5.2. Let the boundary scheme (3.8) be solvable and satisfy the von Neumann 
condition. Then, 

(5.8) R(z, K) # 0, |K| < 1, IZI > 1, 

and 

(5.9) R(z, K) # 0, IKI < 1, IZI > 1. 

Proof. Apply Lemma 4.1 to the solvable boundary scheme, rather than to the 
basic scheme, with Eq. (4.3a) replaced by its boundary counterpart 

m 
T 1(K) C ?( 1)Kj = 0. 

j-O 

Since the boundary scheme is one-sided where by (3.1) c( ) # 0, then parts 
(ii)-(iii) of the lemma imply that 
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We also have 
T_1(O) = CO(- ) 7$ 0; 

so all told 

(5.10) T_1(K) # 0, IKI s 1. 

Since the boundary scheme satisfies the von Neumann condition then by (3.10), 
for IzI > 1, R(z, K) does not vanish on the unit circle |K| = 1. Hence-as in the 
proof of Lemma 4.2-the number of roots of R(z, K) satisfying |K(Z)| < 1 is 

independent of z, IzI > 1, and, by continuity, equals that of the roots K, IKI < 1, of 

R(z -o o, K) = T_1(K) = 0. 

By (5.10), therefore, R(z, K) has no roots |K(Z)I < 1 for IzI > 1, and (5.8) holds. 
To obtain (5.9), we merely note that, by (5.8), the roots K(z) of R(z, K) satisfy 

|K(Z)| > 1 if IzI > 1. Thus, for IzI > 1, those continuous roots satisfy |K(Z)| > 1 and 
the lemma follows. 

Proof of Theorem 3.3. Since the boundary scheme is solvable and satisfies the von 
Neumann condition, Lemma 5.2 implies (3.4), and by Theorem 3.2, approximation 
(2.6a, b) (3.1) is stable. 

Proof of Theorem 3.4. As in the proof of Theorem 3.1, let z satisfy IzI > 1, let 
Ka(Z), IKa(z)I < 1, be a corresponding inner root, and let us prove that 

(5.11) R(z, Ka) O . 

By Theorem 4.2, this will imply stability. 
Comparing Definitions 3.2 and 3.3, we immediately see that since the boundary 

scheme is dissipative, it satisfies the von Neumann condition; so Lemma 5.2 
applies, and it remains to verify (5.1 1) for z and Ka(Z) with 

IZI = J, Ka(Z)I 1 

Indeed, for 

IZi = 1, IKa(Z)I = 1, Ka(Z) 7# 1, 

(5.11) follows from the dissipativity of the boundary scheme as described in 
Definition 3.3; for 

|ZI=1 Z ZL1 Ka (Z) =1 

(5.11) is implied by (3.7); and finally, by Lemma 5.1, K = 1 is never an inner root 
for z = 1. Thus, (5.1 1) is verified and the theorem is proven. 

We conclude the paper by proving Lemmas 3.1 and 3.2. 
Proof of Lemma 3.1. (i) Let the boundary scheme (3.1) be two-level and accurate 

of order zero at least. By zero-order accuracy, the boundary coefficients satisfy 
m q m 

ECj(_ l)= I E C,o. 
j=O a=O j=O 

Hence, 

(5.12) R(z, K)IZ. K-1 
= 0. 

Since the boundary scheme is two-level, R(z, K = 1) is a first degree polynomial in 
z whose single root, by (5.12), is z- = 1. Consequently, 

R(Z, K = 1) = 0, IzI = 1, IzI # 1, 

and (3.7) holds. 
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(ii) In the three-level case, R(z, ic = 1) is a 2nd degree polynomial in z1- with 
real coefficients. By (5.12) again, z- = 1 is one of the roots, so the other is real as 
well, namely 

(5.13) R(z, ic = 1) #0, IzI = 1,z # ?1. 

Combining (5.13) with our hypothesis 

R(z = -1, K = 1) # 0, 

(3.7) follows and the proof is complete. 
Proof of Lemma 3.2. As in the proof of Lemma 5.2, apply Lemma 4.1 to the 

boundary scheme (3.8). Since the boundary scheme is right-sided with co(-,) 0, 
we find that it is solvable if 

(a) the difference equations 
m 

(5.14) T = , v = 0, 1, 2 ... 
j=0 

have no nontrivial solution w E 12(x), and 
(b) the hypothesis of the present lemma is fulfilled, i.e., 

m 

(5.15) TI(K) - C<( )K 0 , 0 K < 1. 
j=O 

Now, it is well known that the most general solution of (5.14) in 12(x) is a 
combination of powers of the roots of T_ I(c) which lie inside the unit disc. Thus, if 
(5.15) holds, then the only solution of (5.14) in 12(x) is the trivial one, namely (b) 
implies (a), and the lemma follows. 
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